Bilinear and trilinear data structures and models for the resolution and interpretation of complex chemical data systems

Romà Tauler ${ }^{1}$ and Anna de Juan ${ }^{2}$
${ }^{1}$ IIQAB-CID-CSIC
${ }^{2}$ University of Barcelona

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical data
- Results of comparison of models and methods to analyze complex (three-way) chemical data
- Conclusions

Introduction and motivations of this work

Basically, two type of models have been proposed for the interpretation and resolution of complex chemical data systems:

- Bilinear models for two-way and three-way data
- Trilinear models for three-way data

Introduction and motivations of this work

- In this presentation, we will review this situation in a chemical context, considering results obtained by application of different three-way methods based or not on trilinear models.
- All this has been analyzed in a previos paper:
'Comparison of three-way resolution methods for non-trilinear chemical data sets'. A. de Juan and R. Tauler. J.of Chemometrics, 2001, 15, 749-772

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

Chemical measurements

0-way data sets 1 -way data sets

2-way data sets

3-way data sets

Kinetic monitoring by HPLC-DAD

Information quality
$(-) \xrightarrow[\text { Data analysis complexity }]{ }$

Chemical measurements Three-way data sets

Two modulated spectral modes

- excitation mode
- emission mode

One chemical mode sample, reaction/process evolution, pH, time, temperature,.

This is the 'archetypical' three-way data set fulfilling a trilinear model

3-way data sets

Is this always true?
Baseline problems, instrumental reproducibility, scattering, missing, outliers...

Chemical measurements Three-way data sets

Two chemical modes

- chromatographic (elution), kinetic, equilibrium, temperature..., mode
- sample, run, reaction/process number

One spectral mode

UV-VIS, NIR, FT-IR, NMR, CD, spectra

These are the more common three-way data sets in Chemistry!!!

Do these data fulfill a trilinear model?

Models to describe chemical measurements

Models for what?

Models for:

1. exploratory data analysis?
2. data interpretation?
3. data resolution?
4.

Models for data resolution \rightarrow resolution of the 'true' underlying 'physical/chemical' sources of data variation

- hard-modeling (physico-chemical model)
- soft-modeling (no physico-chemical model, soft constraints)

Chemometric soft-models to describe chemical measurements

One way data \rightarrow Linear and non-linear models
Two way data \rightarrow Bilinear and non-bilinear models Non-bilinear data can still be linear in one of the two modes

Three-way data \rightarrow Trilinear and non-trilinear models Non-trilinear data can still be linear in two of the modes (bilinear) \rightarrow
This is the more common situation in Chemistry!!!

Factor Analysis/Principal Component Analysis Bilinear Model

$$
\mathbf{D}=\mathbf{U} \mathbf{V}^{\mathbf{T}}+\mathbf{E}
$$

Unique solutions but without physical meaning
Constraints: \mathbf{U} orthogonal, $\mathbf{V}^{\mathbf{T}}$ orthonormal
$\mathbf{V}^{\mathbf{T}}$ in the direction of maximum variance

Multivariate Curve Resolution Bilinear Model

$$
\mathbf{D}=\mathbf{C} \mathbf{S}^{\mathbf{T}}+\mathbf{E}
$$

Non-unique solutions but with physical meaning (rotational/ intensity ambiguities are present)

Constraints: \mathbf{C} and $\mathbf{S}^{\mathbf{T}}$ non-negative
\mathbf{C} or $\mathbf{S}^{\mathbf{T}}$ scaled (normalization, closure)
Other constraints (unimodality, local rank, selectivity...)

Bilinear models for two-way resolution:

 Multivariate Curve Resolution(reaction/process data modeling)

\qquad

Extension of bilinear models to three-way data

THREE-WAY DATA ARRAY

 UNFOLDING/MATRICIZATION versusTWO-WAY DATA ARRAY AUGMENTATION
row-wise, horizontal-wise unfolding

$$
k=1, \ldots, K \stackrel{\substack{~ \\
\hline \\
i=1, \ldots, I \\
i=1, \ldots, I}}{\begin{array}{c}
i=1, \ldots, I
\end{array}}
$$

tube-wise, depth-wise unfolding

Multivariate Curve resolution for Three Way data

Multiple correlated two-way
chemical measurements
columm-wise,
vertical
unfolding

This works very well for many non-trilinear chemicial data sets

Multivariate Curve Resolution for Three Way data

Multivariate Curve resolution for Three Way data

Multivariate Curve Resolution for Three Way data Data Matrix Superaugmentation

row- and column-wise data matrix superaugmentation

Is this two-way, three-way,?

Trilinear models for three-way data: PARAFAC

Trilinear models advantages:

- Very efficient in the investigation of complex three-way data structures.
- They provide unique solutions avoiding the presence of factor analysis rotation ambiguities, frequently present when bilinear models are applied to two-way data.

Trilinear models disadvantages

- Very (or too!) rigid/constrained in practice
- Many times, strictly trilinear models are not appropriate for the resolution of underlying physic-chemical models nor for the estimation of the 'true' vector profiles causing the observed data variance

Non-trilinear models for three-way data: Tucker3 models

Slice-wise representation

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{k}}=\mathrm{CM}_{\mathrm{k}} \mathrm{~S}^{\mathrm{T}} \\
& \mathrm{M}_{\mathrm{k}}=\left(\sum_{\mathrm{nk}=1}^{\mathrm{NK}} z_{k, n k} \mathrm{G}_{\mathrm{k}}\right)
\end{aligned}
$$

Non-trilinear models for three-way data: Tucker2 models

Z-mode is not reduced and the other two (C - and S^{T}-modes are reduced

-Different number of components in the two modes Ni\# Nj
-Interaction between components
in the two modes is possible

$$
\mathrm{d}_{\mathrm{ijk}}=\sum_{\mathrm{n}_{\mathrm{i}}=1}^{N_{\mathrm{i}}} \sum_{\mathrm{n}=1}^{\mathrm{N}_{\mathrm{j}}} \mathrm{c}_{\mathrm{in}} \mathrm{~s}_{\mathrm{j} \mathrm{n}_{\mathrm{j}}} \mathrm{~g}_{\mathrm{n}, \mathrm{n}, \mathrm{k}}+\mathrm{e}_{\mathrm{ijk}}
$$

Stretched/unfolded representation

$$
D_{r}^{\top}=\left[D_{1}^{\top}, D_{2}^{\top}, \ldots, D_{\mathrm{k}}^{\top}\right]=\mathrm{SG}_{\mathrm{r}}^{\top}\left(\mathrm{I}_{\mathrm{k}} \otimes \mathrm{C}^{\top}\right)
$$

Slice-wise representation

$$
\mathrm{D}_{\mathrm{k}}=\mathrm{CG}_{\mathrm{K}} \mathrm{~S}^{\mathrm{T}}
$$

Non-trilinear models for three-way data: Tucker1 models

Interaction between components

Only S^{T} mode is reduced!
C and Z modes are in G
in different modes is not possible

$$
\mathrm{d}_{\mathrm{ijk}}=\sum_{\mathrm{n}_{\mathrm{j}}=1}^{\mathrm{N}_{\mathrm{J}}} \mathrm{~g}_{\mathrm{n}_{\mathrm{j} ~} \mathrm{k}} \mathrm{~s}_{\mathrm{j} \mathrm{n}_{\mathrm{j}}}+\mathrm{e}_{\mathrm{ij} \mathrm{k}}
$$

Stretched/unfolded representation

$$
D_{r}^{\top}=\left[D_{1}^{\top}, D_{2}^{\top}, \ldots, D_{K}^{\top}\right]=\operatorname{SG}_{\mathrm{r}}^{\top}\left(\mathrm{I}_{\mathrm{K}} \otimes \mathrm{I}_{\mathrm{J}}\right)
$$

Slice-wise representation

Tuckerl model is equivalent to unfolded bilinear model!!

Trilinearity can be implemented independently for each component (chemical species) in MCR-ALS!

Effect of application of a trilinearity constraint

Three-way models options

	NO (Trilinearity)	PARAFAC	MCR tril
		PARAFAC2	
Trilinearity deviations	Medium	Tucker3	MCR (speciation)
		Tucker2	
	Strong (Bilinearity)	Tucker1 Unfolded PCA	MCR (no speciation)

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

HPLC-DAD DATA SETS

C-mode: chromatographic profiles.

S-mode: spectra profiles.

Z-mode: quantitative profiles

DATA SET 1 (real data): LC-DAD determination of organophosphorous pesticides in natural waters

Total nr. of chemical compounds: 3 . (A,B known, C unknown) Nr. of pure spectra: 3
Nr. of chromatographic profiles: 5

$D_{2}=C_{D} S_{A}^{\top}+E_{2}$
$\mathrm{D}_{3}=\mathrm{C}_{\mathrm{E}} \mathbf{S}_{\mathrm{B}}^{\mathrm{T}}+\mathrm{E}_{3}$ and shape

Nr. of slabs (data matrices): 3
$D_{1}(A, B, C)$
D_{2} (A standard)
D_{3} (B standard)

Every slab (data matrix) is bilinear!
$\mathrm{D}_{1}=\mathrm{c}_{\mathrm{A}} \mathbf{s}^{\top}{ }_{\mathrm{A}}+\mathrm{c}_{\mathrm{B}} \mathbf{s}^{\top}{ }_{\mathrm{B}}+\mathrm{c}_{\mathrm{C}} \mathbf{s}^{\boldsymbol{\top}}{ }_{\mathrm{C}}+\mathrm{E}_{1}$

Data are not trilinear since c_{A} and c_{D} and C_{B} and c_{E} are different in shift

Building three-way models: PARAFAC model is built with 3 components in each mode

PARAFAC stretched (unfolded) representation

$$
\left[\mathrm{D}_{1}^{\mathrm{T}} \mathrm{D}_{2}^{\mathrm{T}} \mathrm{P}_{3}^{\mathrm{T}}\right]=S\left[T_{1}^{\mathrm{T}} \mathrm{~T}_{2}^{T_{\mathrm{T}}^{T}}\right]\left(\mathrm{Z}^{\mathrm{T}} \otimes \mathrm{C}^{\mathrm{T}}\right)
$$

Building three-way models: PARAFAC2 model is built

 with 3 components in each mode

All slabs are modeled with the same $\mathbf{S}^{\boldsymbol{\top}}$ but different $\mathbf{C}_{\mathbf{k}}$, considering three profiles in each mode! Components in C-mode can be slightly different!

$$
D_{k}=C_{k} Z_{k} S^{\top}
$$

$$
\mathrm{C}_{1} \mathrm{C}_{1}^{\top}=\mathrm{C}_{2} \mathrm{C}_{2}^{\top}=\ldots=\mathrm{C}_{\mathrm{k}} \mathrm{C}_{\mathrm{k}}^{\top} \quad \text { What this really means? }
$$

Building three-way models: MCR model is built using 3 components in the S mode and 3 components in the (unfolded) augmented C mode

$$
\begin{aligned}
D_{c}= & {\left[D_{1} ; D_{2} ; D_{3}\right]=} \\
& {\left[C_{1} ; C_{2} ; C_{3}\right] S^{\top} } \\
D_{r}^{\top}= & {\left[D^{\top}{ }_{1} D^{\top}{ }_{2} D^{\top}{ }_{3}\right]=} \\
& S\left[C^{\top}{ }_{1} C^{\top}{ }_{2} C^{\top}{ }_{3}\right]
\end{aligned}
$$

Every slabs is modeled with three different profiles in $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, but with the same three profiles in S^{\top}

$$
D_{k}=C_{k} S^{\top}
$$

Building three-way models: Restricted Tucker3 model is built using 5 components in the C -mode and 3 components in the S - and Z -modes

Fit values for data set 1

Method	Fit \%
PARAFAC	93.0
PARAFAC2	98.7
MCR	98.0
Tucker3	97.8

Applied constraints:
 Non-negativity
 Unimodality

Different type of initial Estimates

$$
F i t \%=100\left(1-\sqrt{\frac{\sum_{i, j, k} e_{i j k}^{2}}{\sum_{i, j, k} d_{i j k}^{2}}}\right)
$$

Maximum number of Iterations: 100

COMPARISON OF RESOLVED PROFILES
Data set 1
interferent

MCR ©

TUCKER3

DATA SET 2

Total nr. of compounds: 4. (A,B, C and D)
Nr. of pure spectra: 4
Nr . of chromatographic profiles: 16

Nr. of slabs (data matrices): 4
$D_{1}, D_{2}, D_{3}, D_{4}$ (A,B,C,D)
Two data sets, with and without noise

Every slab (data matrix) is bilinear! $D_{1}=c_{A} S^{\top}{ }_{A}+c_{B} s^{\top}{ }_{B}+c_{C} S^{\top}{ }_{C}+c_{D} S^{\top}{ }_{D}+E_{1}$ $D_{2}=\mathbf{c}_{E} \mathbf{S}^{\mathbf{T}}{ }_{A}+\mathbf{c}_{\mathrm{F}} \mathbf{S}^{\top}{ }_{B}+\mathbf{c}_{\boldsymbol{G}} \mathbf{S}^{\top}{ }_{\mathrm{C}}+\mathbf{c}_{\mathrm{H}} \mathbf{S}^{\top}{ }_{\mathrm{D}}+\mathrm{E}_{2}$ $D_{3}=\mathbf{c}_{\mathbf{I}} \mathbf{s}^{\top}{ }_{A}+\mathbf{c}_{J} \mathbf{s}^{\top}{ }_{B}+\mathbf{c}_{\mathrm{K}} \mathbf{s}^{\top}{ }^{\top}{ }_{C}+\mathbf{c}_{\mathrm{L}} \mathbf{s}^{\top}{ }^{\top}{ }_{D}+E_{3}$

Data are not trilinear since
concentration profiles of A, B, C and
D are different in shift and shape!

Building three-way models:

PARAFAC model is built with 3 components in each mode

All slabs are modeled with the same \mathbf{C} and $\mathbf{S}^{\boldsymbol{\top}}$ considering four profiles in all modes!
PARAFAC slice-wise representation

$$
D_{k}=C Z_{k} S^{\top}
$$

Building three-way models:

PARAFAC2 model is built with 3 components in each

All slabs are modeled with the same $\mathbf{S}^{\boldsymbol{\top}}$ but different $\mathbf{C}_{\mathbf{k}}$ and considering only three profiles in each mode! Components in C-mode can be different!

$$
D_{k}=C_{k} Z_{k} S^{\top}
$$

$$
\mathrm{C}_{1} \mathrm{C}_{1}^{\top}=\mathrm{C}_{2} \mathrm{C}_{2}^{\top}=\ldots=\mathrm{C}_{\mathrm{k}} \mathrm{C}_{\mathrm{k}}{ }^{\top}
$$

Building three-way models:
MCR model is built using four components in the S mode and four components in the (unfolded) augmented C mode

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{aug}}=\left[\mathrm{D}_{1} ; \mathrm{D}_{2} ; \mathrm{D}_{3} ; \mathrm{D}_{4}\right]= \\
& {\left[\mathrm{C}_{1} ; \mathrm{C}_{2} ; \mathrm{C}_{3} ; \mathrm{C}_{4}\right] \mathbf{S}^{\top}} \\
& \mathbf{D}^{\top}{ }_{\mathrm{aug}}=\left[\mathbf{D}^{\top}{ }_{1} \mathbf{D}^{\top} \mathbf{D}^{\boldsymbol{\top}} \mathbf{D}_{3} \mathbf{D}^{\top}{ }_{4}\right]= \\
& \mathbf{S}\left[\mathrm{C}_{1}^{\top} \mathrm{C}_{2} \mathrm{C}^{\top}{ }_{3} \mathrm{C}^{\top}{ }_{4}\right]
\end{aligned}
$$

Every slab is modeled with four different profiles in $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ but with the same four profiles in $\mathbf{S}^{\boldsymbol{\top}}$

$$
D_{k}=C_{k} \mathbf{S}^{\top}
$$

Building three-way models:Tucker2 model is built using 16 components in the C-mode and 4
components in the S - mode

It is not possible to build a
Tucker3 model, with the 3 modes reduced
Z-mode is confounded in C-mode!

Stretched/unfolded representation

Slice-wise
representation

$$
\left[D_{1}^{\top} D_{2}^{\top} D_{3}^{\top} D_{4}^{\top}\right]=S\left[G_{1}^{\top} G_{2}^{\top} G_{3}^{\top} G_{4}^{\top}\right]\left(\left[\begin{array}{llll}
l_{1} & I_{2} & l_{3} & I_{4}
\end{array}\right] \otimes C^{\top}\right)
$$

$$
\mathrm{D}_{\mathrm{k}}=\mathrm{C} \mathrm{G}_{\mathrm{k}} \mathrm{~S}^{\top}
$$

Building three-way models Tucker2 model. How is G ?

$$
\begin{gathered}
\mathbf{G}_{1} \\
\mathbf{G}=\left(\right)
\end{gathered}
$$

 used in the simulation

C in MCR is full rank 4!

Condition Number is 4.3

Calculation of C^{+}?

C
C in Tucker2 is close to rank deficient! Condition number is 405.8

Fit values for data set 2 (noise free)

Method	Fit \%
PARAFAC	91.6
PARAFAC2	93.6
MCR	99.9
Tucker3	99.9

Applied constraints:
Non-negativity
Unimodality

Different type of initial Estimates

$$
F i t \%=100\left(1-\sqrt{\frac{\sum_{i, j, k} e_{i j k}^{2}}{\sum_{i, j, k} d_{i j k}^{2}}}\right)
$$

Fit values for data set 2

(heterocedastic proportional added noise 6.71\%)

Method	Fit \%
PARAFAC	89.3
PARAFAC2	93.4
MCR	93.3
Tucker3	93.5

Applied constraints:
 Non-negativity
 Unimodality

Different type of initial Estimates

$$
F i t \%=100\left(1-\sqrt{\frac{\sum_{i, j, k} e_{i j k}^{2}}{\sum_{i, j, k} d_{i j k}^{2}}}\right)
$$

Maximum number of Iterations: 100

COMPARISON OF RESOLVED PROFILES

(noise free case)

TRUE

PROFILES

PARAFAC :

PARAFAC2 ©

MCR ©

TUCKER2 ${ }^{-}$

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

Guidelines for method selection

Deviations

 from trilinearityMild
Medium
Strong
Array size

CONCLUSIONS

\checkmark PARAFAC performance is extremely vulnerable to deviations from trilinearity.

Performance diagnostic: comparison of lack of fit between PARAFAC and any other non-trilinear modelbased method.

Similar lacks of fit
\Rightarrow trilinear system
\Rightarrow use recommended
Higher lack of fit for PARAFAC
\Rightarrow non-trilinear system
\Rightarrow avoid use

CONCLUSIONS

\checkmark PARAFAC2 requires the presence of strongly patterned deviations from trilinearity

$$
\left(C_{1} C_{1}^{\top}=C_{2} C_{2}^{\top}=\ldots=C_{k} C_{k}^{\top}\right)
$$

C-mode (e.g., elution profiles) is unconstrained.
Performance diagnostic: examination of profile shape in C-mode.
Chemically meaningful shapes
\Rightarrow PARAFAC2 pattern
\Rightarrow use recommended
Chemically meaningless shapes
\Rightarrow no PARAFAC2 pattern
\Rightarrow avoid use

CONCLUSIONS

\checkmark Restricted TUCKER and MCR perform similarly while not working with large data arrays.
\checkmark Pseudoinversion of matrix and distinction of profiles related to the elution mode is more stable and gives better results for the MCR C matrix (with augmented C profiles) than for the TUCKER C matrix.

General Conclusions

\checkmark Chemical measurements provide in many circumstances two-, three- and multi-way data
\checkmark Chemical data usually do fulfill a bilinear model
\checkmark Chemical data do not fulfill a full trilinear model in many cases
\checkmark Mixed bilinear and trilinear data models can be optimal in many circumstances and they can be solved using constrained bilinear models of matricized/unfolded cubes or augmented matrices like in MCR

Software

1. N-way toolbox by C. Andersson and R. Bro. http://www.models.kvl.dk/source/nwaytoolbox
2. MCR-ALS by R. Tauler and A. de Juan. http://www.ub.es/gesq/mcr/mcr.htm
