Bilinear and trilinear data structures and models for the resolution and interpretation of complex chemical data systems

> Romà Tauler¹ and Anna de Juan² ¹IIQAB-CID-CSIC ²University of Barcelona

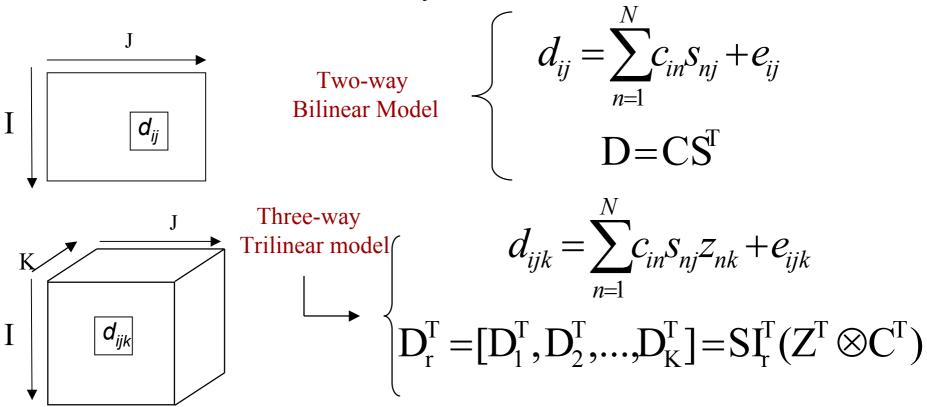
Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical data
- Results of comparison of models and methods to analyze complex (three-way) chemical data
- Conclusions

Introduction and motivations of this work

Basically, two type of models have been proposed for the interpretation and resolution of complex chemical data systems:

- Bilinear models for two-way and three-way data
- Trilinear models for three-way data



Introduction and motivations of this work

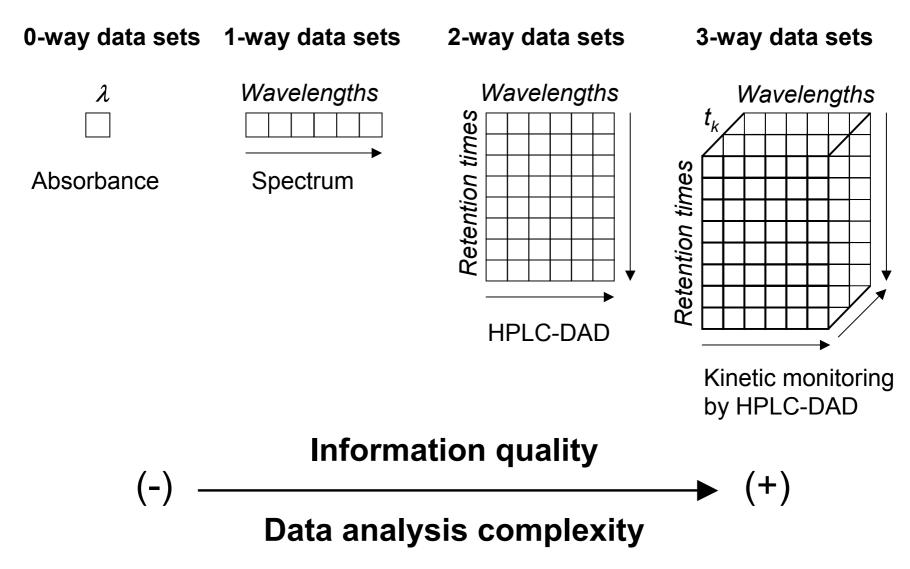
• In this presentation, we will review this situation in a chemical context, considering results obtained by application of different three-way methods based or not on trilinear models.

All this has been analyzed in a previos paper: 'Comparison of three-way resolution methods for non-trilinear chemical data sets'. A. de Juan and R. Tauler. J.of Chemometrics, 2001, 15, 749-772

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

Chemical measurements



Chemical measurements Three-way data sets

Two modulated spectral modes

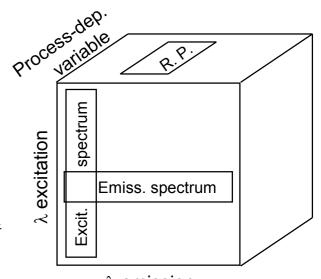
- excitation mode

- emission mode

<u>One chemical mode</u> sample, reaction/process evolution, pH, time, temperature,.

This is the 'archetypical' three-way data set fulfilling a trilinear model

Is this always true? Baseline problems, instrumental reproducibility, scattering, missing, outliers... 3-way data sets



 λ emission

Chemical measurements Three-way data sets

Two chemical modes

- chromatographic (elution), kinetic,
equilibrium, temperature..., mode
- sample, run, reaction/process number

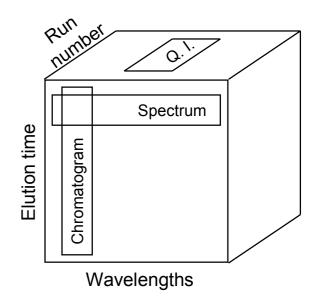
One spectral mode

UV-VIS, NIR, FT-IR, NMR, CD, spectra

These are the more common three-way data sets in Chemistry!!!

Do these data fulfill a trilinear model?

3-way data sets



Models to describe chemical measurements

Models for what?

Models for:

- 1. exploratory data analysis?
- 2. data interpretation?
- 3. data resolution?
- 4.

Models for data resolution \rightarrow resolution of the 'true' underlying 'physical/chemical' sources of data variation

- hard-modeling (physico-chemical model)
- **soft-modeling** (no physico-chemical model, soft constraints)

Chemometric soft-models to describe chemical measurements

One way data \rightarrow Linear and non-linear models

Two way data → Bilinear and non-bilinear models Non-bilinear data can still be linear in one of the two modes

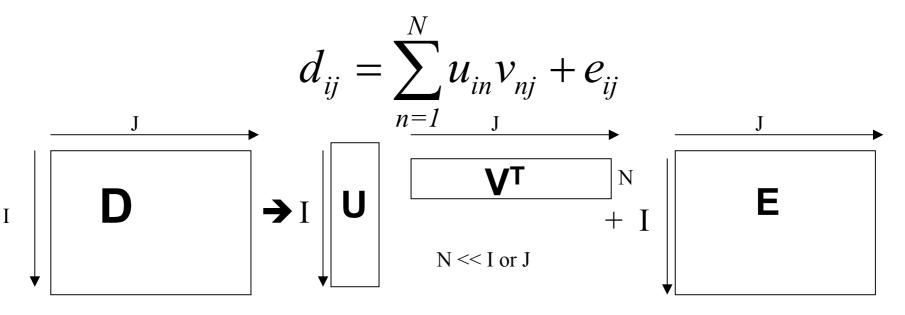
Three-way data → Trilinear and non-trilinear models Non-trilinear data can still be linear in two of the modes (bilinear) → This is the more common situation in Chemistry!!!

Factor Analysis/Principal Component Analysis Bilinear Model

$\mathbf{D} = \mathbf{U} \ \mathbf{V}^{\mathrm{T}} + \mathbf{E}$

Unique solutions but without physical meaning

Constraints: U orthogonal, V^{T} orthonormal V^{T} in the direction of maximum variance

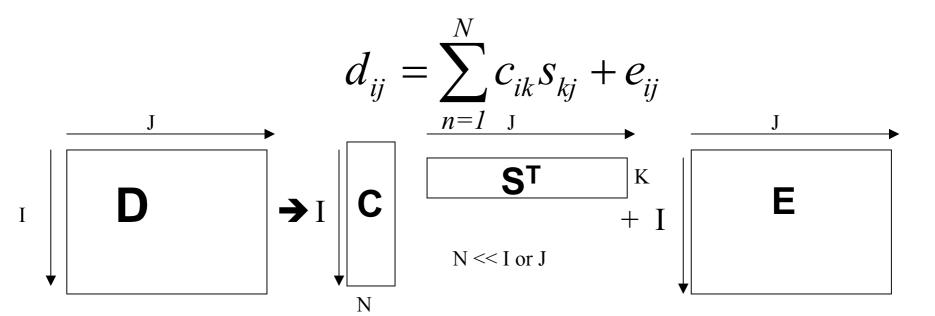


Multivariate Curve Resolution Bilinear Model

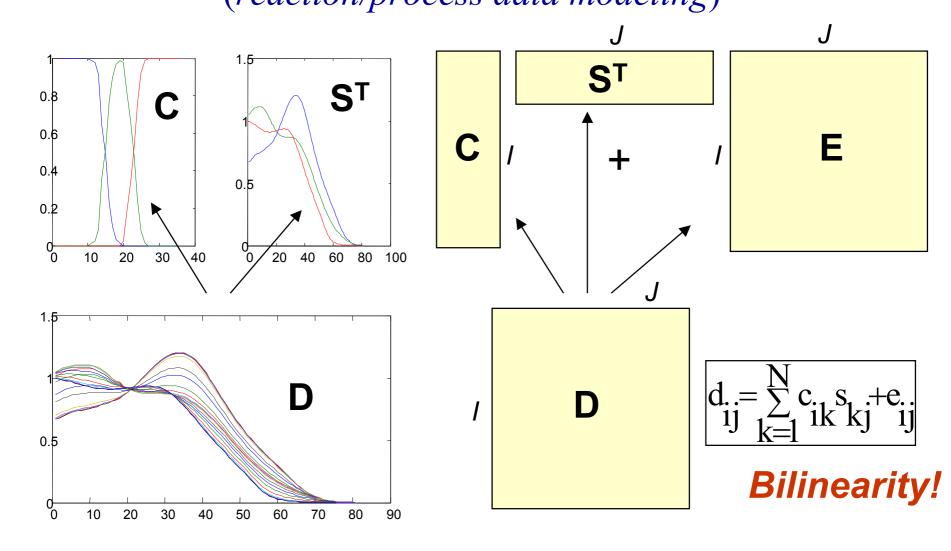
$\mathbf{D} = \mathbf{C} \ \mathbf{S}^{\mathrm{T}} + \mathbf{E}$

Non-unique solutions but with physical meaning (rotational/ intensity ambiguities are present)

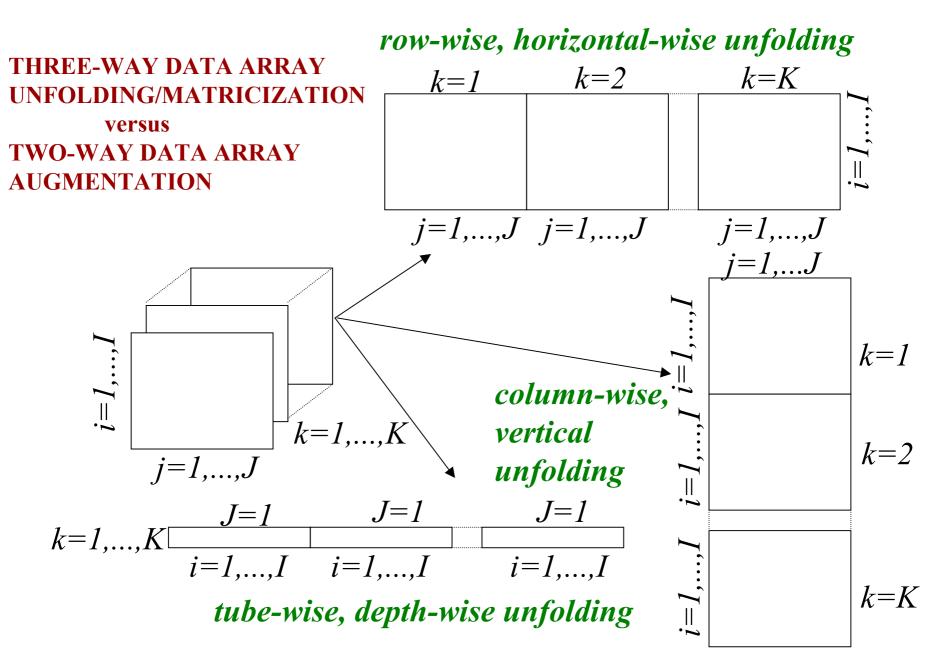
Constraints: C and S^T non-negative C or S^T scaled (normalization, closure) Other constraints (unimodality, local rank, selectivity...)



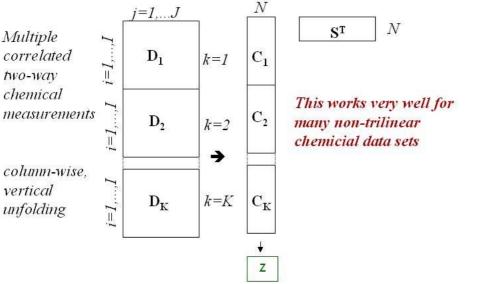
Bilinear models for two-way resolution: Multivariate Curve Resolution (reaction/process data modeling)



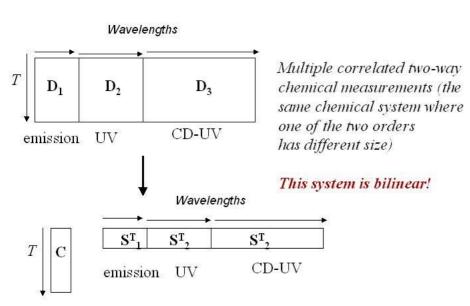
Extension of bilinear models to three-way data



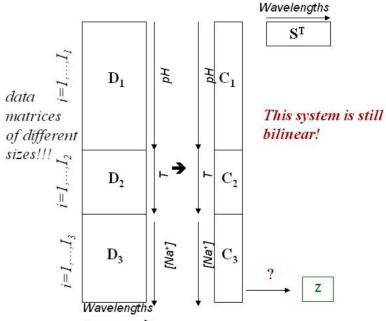
Multivariate Curve resolution for Three Way data



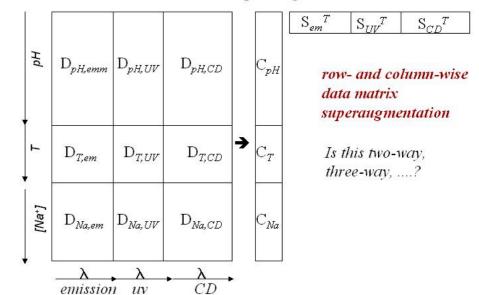
Multivariate Curve Resolution for Three Way data



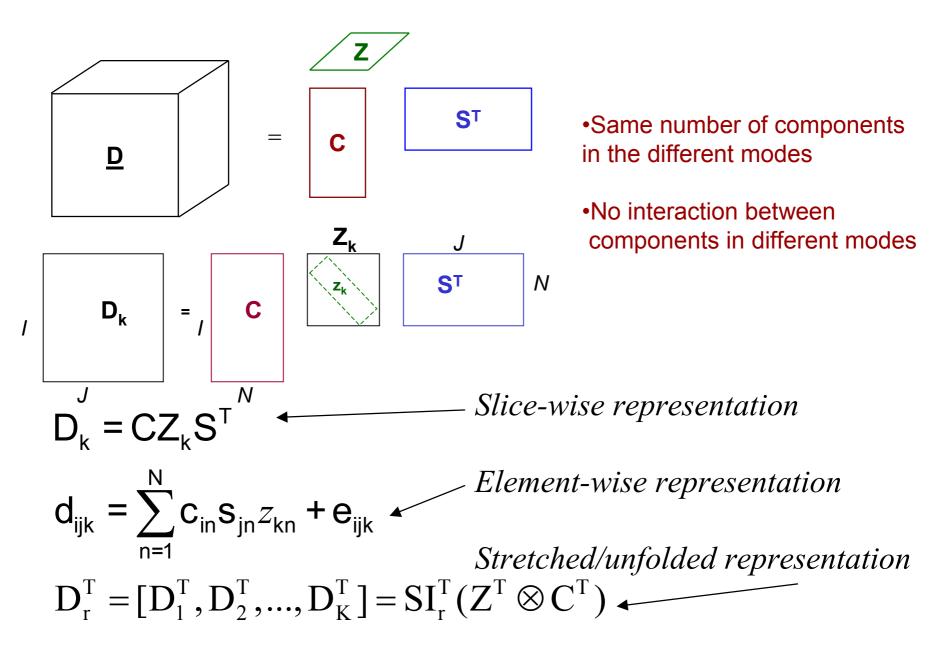
Multivariate Curve resolution for Three Way data



Multivariate Curve Resolution for Three Way data Data Matrix Superaugmentation



Trilinear models for three-way data: PARAFAC



Trilinear models advantages:

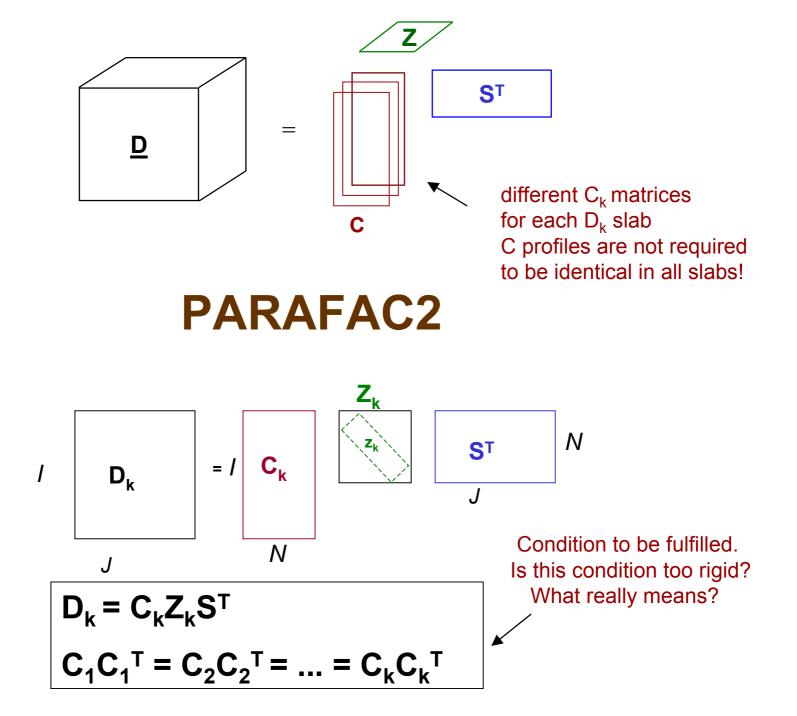
• Very efficient in the investigation of complex three-way data structures.

• **They provide unique solutions** avoiding the presence of factor analysis rotation ambiguities, frequently present when bilinear models are applied to two-way data.

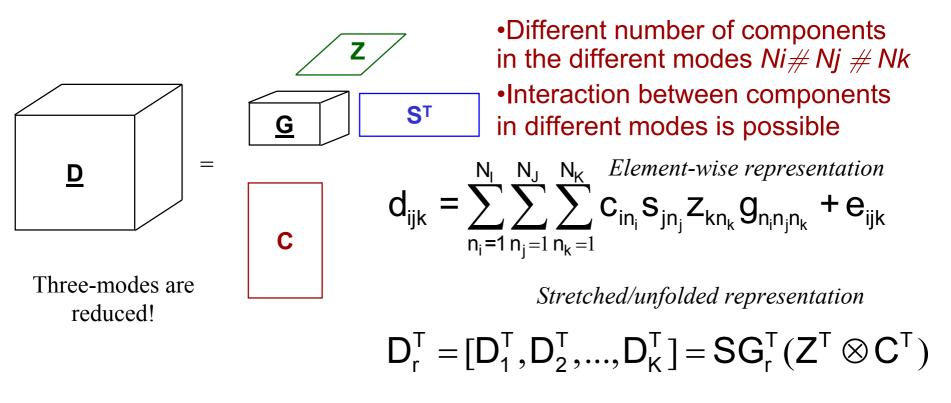
Trilinear models disadvantages

• Very (or too!) rigid/constrained in practice

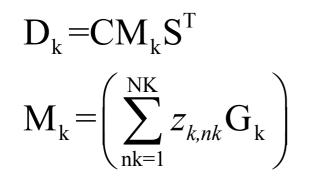
• Many times, strictly trilinear models are not appropriate for the **resolution** of underlying physic-chemical models nor **for the estimation of the 'true' vector profiles** causing the observed data variance

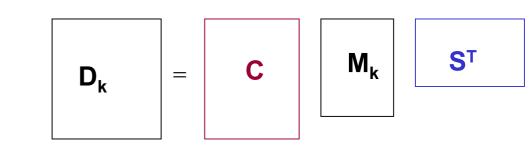


Non-trilinear models for three-way data: Tucker3 models



Slice-wise representation





Non-trilinear models for three-way data: Tucker2 models

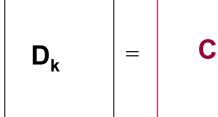
 $\underline{\mathbf{D}} = \begin{bmatrix} \mathbf{G} & \mathbf{S}^{\mathsf{T}} \\ \mathbf{D} & \mathbf{S}^{\mathsf{T}} \end{bmatrix} \cdot \mathbf{D} \text{ ifferent number of components in the two modes } Ni \notin Nj \\ \cdot \text{ Interaction between components in the two modes is possible} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \text{Z-mode is not reduced and the other} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf$

two (C- and S^T-modes are reduced

Stretched/unfolded representation

 $\boldsymbol{D}_{r}^{\mathsf{T}} = [\boldsymbol{D}_{1}^{\mathsf{T}}, \boldsymbol{D}_{2}^{\mathsf{T}}, ..., \boldsymbol{D}_{\mathsf{K}}^{\mathsf{T}}] = \boldsymbol{S}\boldsymbol{G}_{r}^{\mathsf{T}}(\boldsymbol{I}_{\mathsf{K}} \otimes \boldsymbol{C}^{\mathsf{T}})$

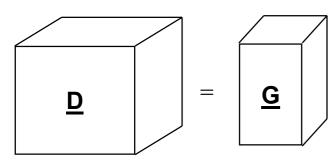
Slice-wise representation



 $D_{\nu} = CG_{\kappa}S^{\perp}$

Non-trilinear models for three-way data: Tucker1 models

ST



Interaction between components in different modes is not possible

Only S^T mode is reduced! C and Z modes are in G

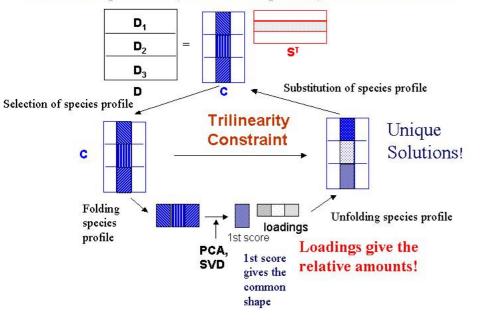
Stretched/unfolded representation

 $\boldsymbol{D}_{r}^{\mathsf{T}} = [\boldsymbol{D}_{1}^{\mathsf{T}}, \boldsymbol{D}_{2}^{\mathsf{T}}, ..., \boldsymbol{D}_{\mathsf{K}}^{\mathsf{T}}] = \boldsymbol{S}\boldsymbol{G}_{r}^{\mathsf{T}}(\boldsymbol{I}_{\mathsf{K}} \otimes \boldsymbol{I}_{\mathsf{J}})$

 $d_{ijk} = \sum_{n_i=1}^{N_J} g_{n_j i k} s_{j n_j} + e_{ijk}$

Slice-wise representation

Tucker1 model is equivalent to unfolded bilinear model!!



Trilinearity can be implemented independently for each component (chemical species) in MCR-ALS!

Effect of application of a trilinearity constraint



Three-way models options

	NO (Trilinearity)	PARAFAC	MCR tril
		PARAFAC2	
Trilinearity deviations	Medium	Tucker3	MCR (speciation)
		Tucker2	
	Strong (Bilinearity)	Tucker1 Unfolded PCA	MCR (no speciation)

Outline:

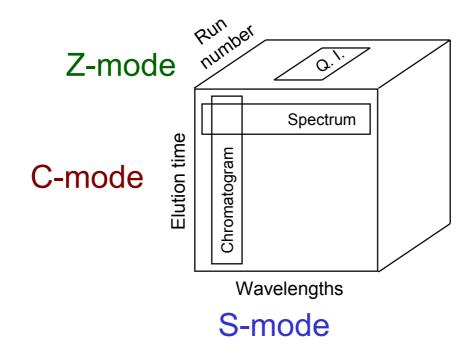
- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

HPLC-DAD DATA SETS

C-mode: chromatographic profiles.

S-mode: spectra profiles.

Z-mode: quantitative profiles

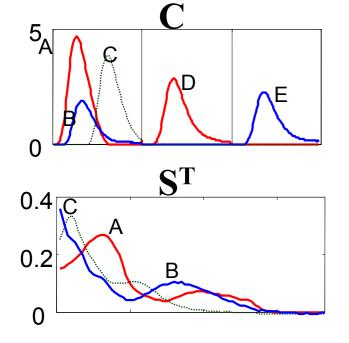


Data set 1

DATA SET 1 (real data): LC-DAD determination of organophosphorous pesticides in natural waters

Total nr. of chemical compounds: 3. (A,B known, C unknown) Nr. of pure spectra: 3 Nr. of chromatographic profiles: 5

Nr. of slabs (data
matrices): 3
$$D_1$$
 (A,B,C)
 D_2 (A standard)
 D_3 (B standard)

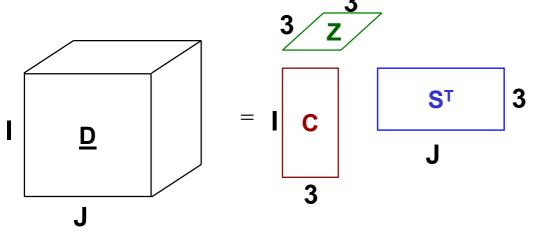


Every slab (data matrix) is bilinear! $D_1 = c_A s^T_A + c_B s^T_B + c_C s^T_C + E_1$ $D_2 = c_D s^T_A + E_2$ $D_3 = c_E s^T_B + E_3$

Data are not trilinear since c_A and c_D and c_B and c_E are different in shift and shape

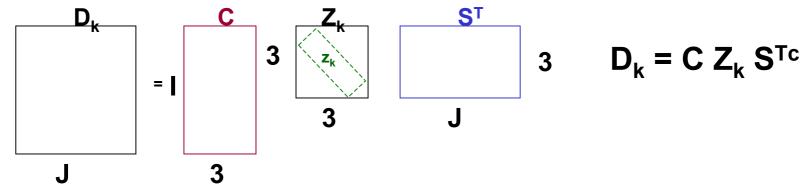
Data set 1

Building three-way models: PARAFAC model is built with 3 components in each mode



I

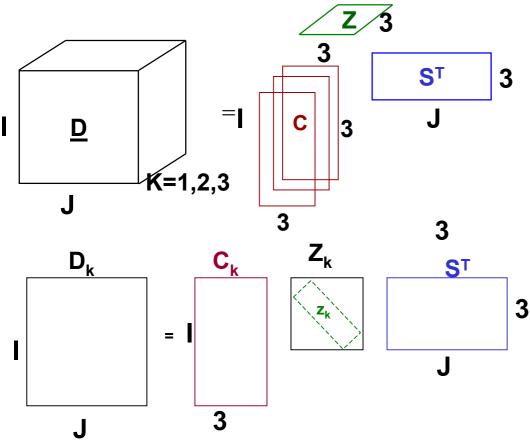
All slabs are modeled with the same **C** and **S**^T considering only three profiles in each mode!



PARAFAC stretched (unfolded) representation

$$\left[D_1^T D_2^T D_3^T\right] = S\left[I_1^T I_2^T I_3^T\right] (Z^T \otimes C^T)$$

Building three-way models: PARAFAC2 model is built with 3 components in each mode



All slabs are modeled with the same S^T but different C_k , considering three profiles in each mode! Components in C-mode can be slightly different!

Data set 1

$$\mathsf{D}_{\mathsf{k}} = \mathsf{C}_{\mathsf{k}} \mathsf{Z}_{\mathsf{k}} \mathsf{S}^{\mathsf{T}}$$

However this condition should be obeyed:

 $\mathbf{C}_{1}\mathbf{C}_{1}^{\mathsf{T}} = \mathbf{C}_{2}\mathbf{C}_{2}^{\mathsf{T}} = \dots = \mathbf{C}_{k}\mathbf{C}_{k}^{\mathsf{T}}$

What this really means?

Building three-way models: MCR model is built using 3 components in the S mode and 3 components in the (unfolded) augmented C mode

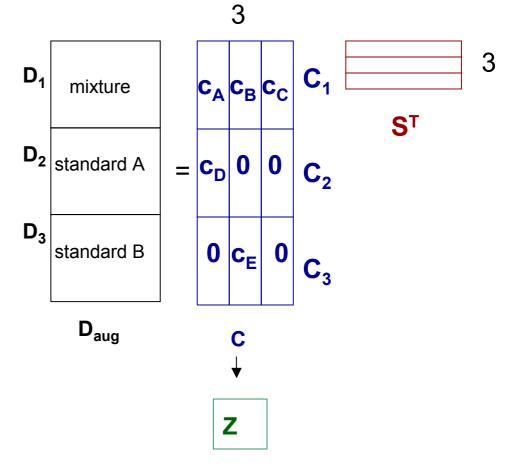
Data set 1

$$D_{c} = [D_{1}; D_{2}; D_{3}] = [C_{1;}C_{2}; C_{3}] S^{T}$$

$$D_{r}^{\mathsf{T}} = [D_{1}^{\mathsf{T}} D_{2}^{\mathsf{T}} D_{3}^{\mathsf{T}}] = S [C_{1}^{\mathsf{T}} C_{2}^{\mathsf{T}} C_{3}^{\mathsf{T}}]$$

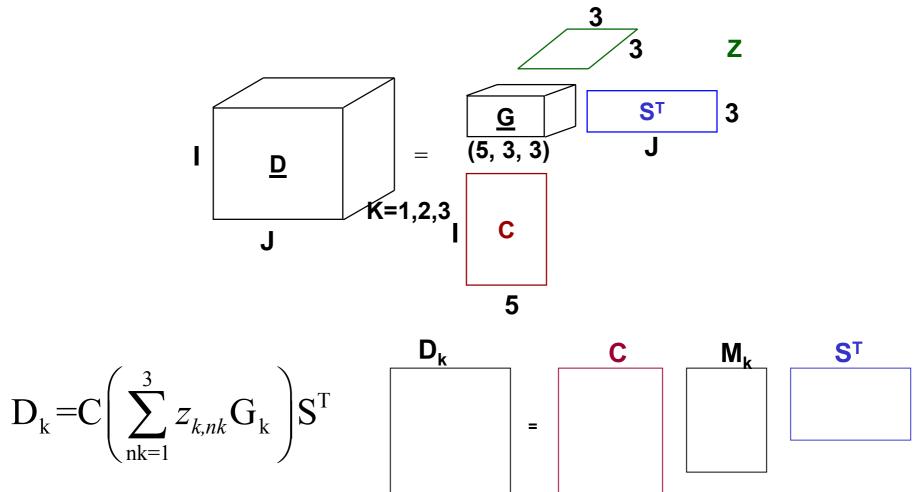
Every slabs is modeled with three different profiles in C_1 , C_2 , C_3 , but with the same three profiles in S^T

$$D_k = C_k S^T$$



Data set 1

Building three-way models: Restricted Tucker3 model is built using 5 components in the C-mode and 3 components in the S- and Z-modes



Fit values for data set 1

Method	Fit %	
PARAFAC	93.0	
PARAFAC2	98.7	
MCR	98.0	
Tucker3	97.8	

$$Fit\% = 100 \left(1 - \sqrt{\frac{\sum_{i,j,k} e_{ijk}^2}{\sum_{i,j,k} d_{ijk}^2}} \right)$$

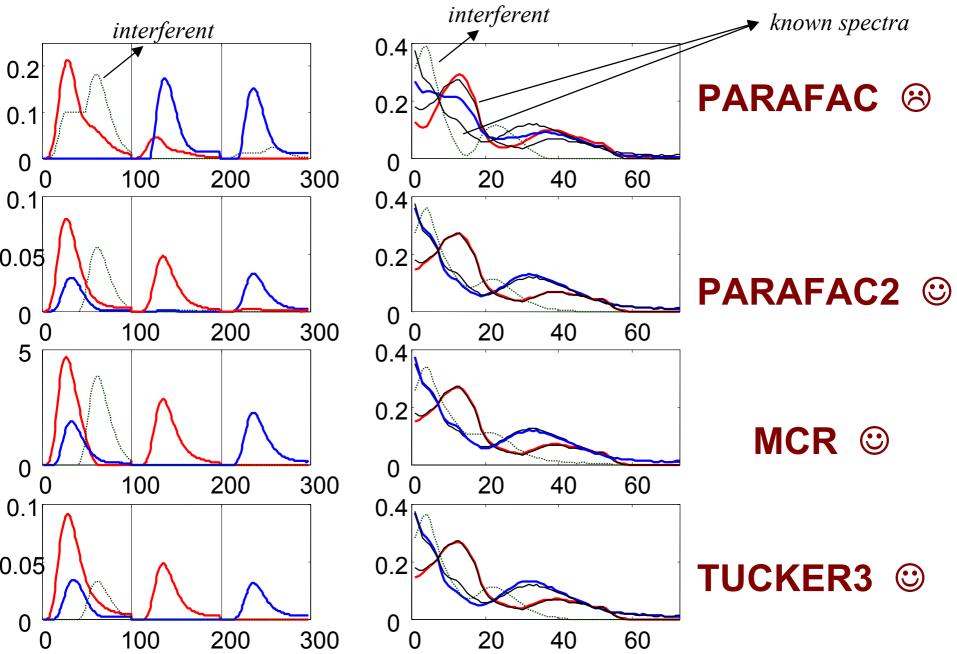
Applied constraints: Non-negativity Unimodality

Different type of initial Estimates

Maximum number of Iterations: 100

COMPARISON OF RESOLVED PROFILES

Data set 1



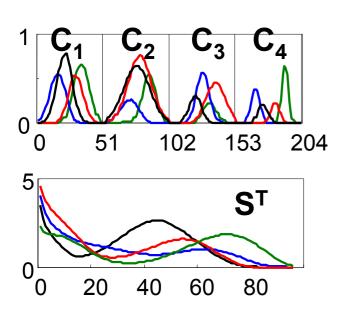
DATA SET 2

Total nr. of compounds: 4. (A,B, C and D) Nr. of pure spectra: 4 Nr. of chromatographic profiles: 16 Nr. of slabs (data matrices): 4 $D_{1,} D_{2}, D_{3}, D_{4}$ (A,B,C,D)

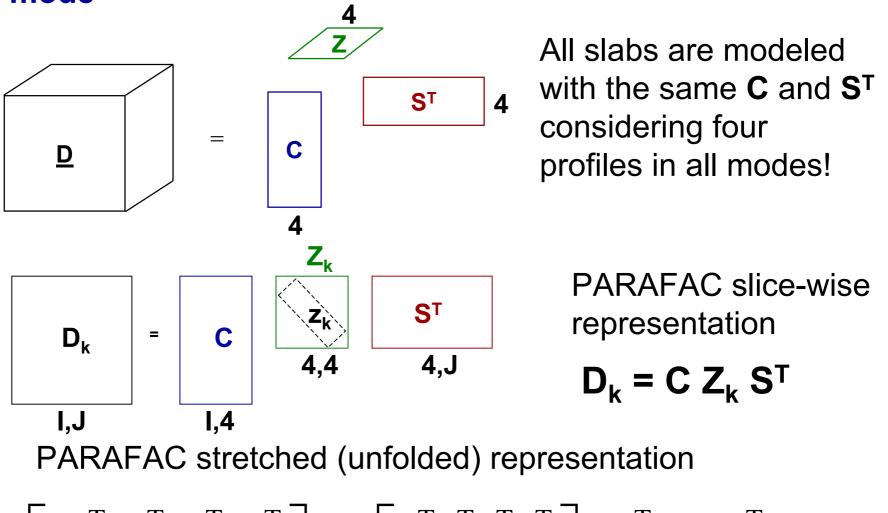
Two data sets, with and without noise

Every slab (data matrix) is bilinear! $D_1 = c_A s^T_A + c_B s^T_B + c_C s^T_C + c_D s^T_D + E_1$ $D_2 = c_E s^T_A + c_F s^T_B + c_G s^T_C + c_H s^T_D + E_2$ $D_3 = c_I s^T_A + c_J s^T_B + c_K s^T_C + c_L s^T_D + E_3$ $D_1 = c_M s^T_A + c_N s^T_B + c_O s^T_C + c_P s^T_D + E_4$

Data are not trilinear since concentration profiles of A, B, C and D are different in shift and shape!

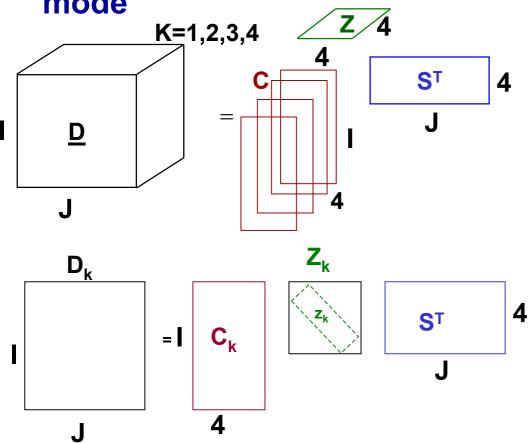


Data set 2 Building three-way models: PARAFAC model is built with 3 components in each mode



 $\left[D_1^T D_2^T D_3^T D_4^T\right] = S\left[I_1^T I_2^T I_3^T I_4^T\right] (Z^T \otimes C^T)$

Building three-way models: PARAFAC2 model is built with 3 components in each mode



All slabs are modeled with the same S^T but different C_k and considering only three profiles in each mode! Components in C-mode can be different!

Data set 2

$$\mathbf{D}_{\mathbf{k}} = \mathbf{C}_{\mathbf{k}} \mathbf{Z}_{\mathbf{k}} \mathbf{S}^{\mathsf{T}}$$

$$\mathbf{C}_{1}\mathbf{C}_{1}^{\mathsf{T}} = \mathbf{C}_{2}\mathbf{C}_{2}^{\mathsf{T}} = \dots = \mathbf{C}_{k}\mathbf{C}_{k}^{\mathsf{T}}$$

Data set 2

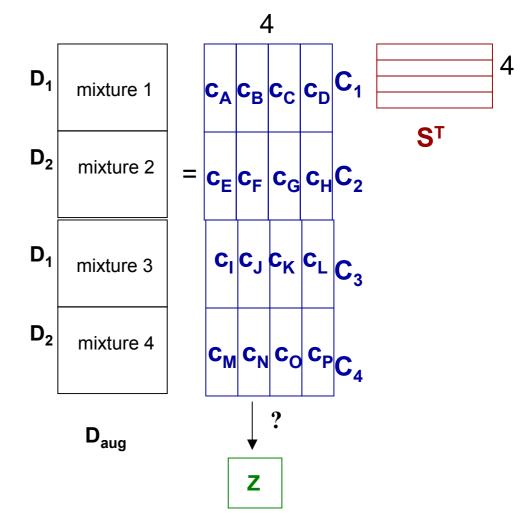
Building three-way models: MCR model is built using four components in the S mode and four components in the (unfolded) augmented C mode

$$D_{aug} = [D_1; D_2; D_3; D_4] = [C_1; C_2; C_3; C_4] S^{T}$$

$$\mathbf{D}_{\text{aug}}^{\mathsf{T}} = [\mathbf{D}_{1}^{\mathsf{T}} \mathbf{D}_{2}^{\mathsf{T}} \mathbf{D}_{3}^{\mathsf{T}} \mathbf{D}_{4}^{\mathsf{T}}] = \mathbf{S} [\mathbf{C}_{1}^{\mathsf{T}} \mathbf{C}_{2}^{\mathsf{T}} \mathbf{C}_{3}^{\mathsf{T}} \mathbf{C}_{4}^{\mathsf{T}}]$$

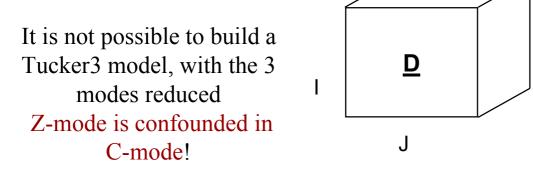
Every slab is modeled with four different profiles in C_1 , C_2 , C_3 , C_4 but with the same four profiles in S^T

$$D_k = C_k S^T$$



Building three-way models:Tucker2 model is built using 16 components in the C-mode and 4 components in the S- mode

4



$$= \frac{\mathbf{G}}{16x4x4} \mathbf{S}^{\mathsf{T}} \mathbf{4}$$

Stretched/unfolded representation

Slice-wise representation

$$\begin{bmatrix} D_1^{\mathsf{T}} D_2^{\mathsf{T}} D_3^{\mathsf{T}} D_4^{\mathsf{T}} \end{bmatrix} = S \begin{bmatrix} G_1^{\mathsf{T}} G_2^{\mathsf{T}} G_3^{\mathsf{T}} G_4^{\mathsf{T}} \end{bmatrix} (\begin{bmatrix} I_1 & I_2 & I_3 & I_4 \end{bmatrix} \otimes C^{\mathsf{T}})$$

$$D_k = C & G_k & S^{\mathsf{T}}$$

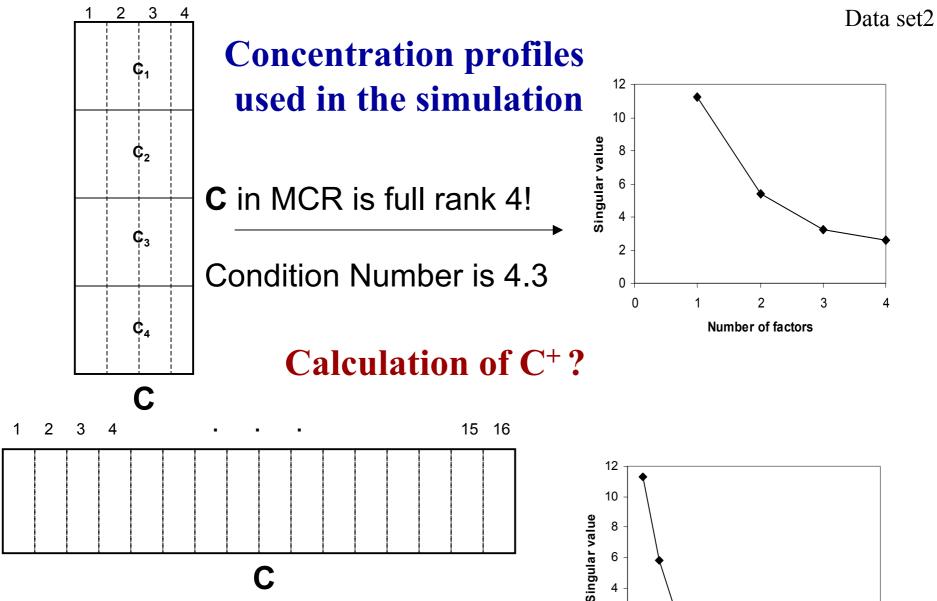
$$\begin{bmatrix} D_k & = & I & C & G_k & 4 & S^{\mathsf{T}} & 4 \\ & & & J & & 16 & & J \end{bmatrix}$$

Data set 2

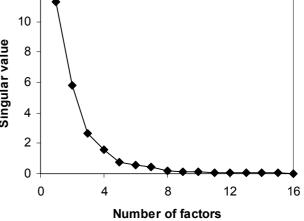
Data set 2

Building three-way models Tucker2 model. How is G?

	G ₁				G ₂				G_3			G ₄				
	(1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
G =	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0 -	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1)



C in Tucker2 is close to rank deficient! Condition number is 405.8



Fit values for data set 2 (noise free)

Method	Fit %
PARAFAC	91.6
PARAFAC2	93.6
MCR	99.9
Tucker3	99.9

 $Fit\% = 100 \left(1 - \sqrt{\frac{\sum_{i,j,k} e_{ijk}^2}{\sum_{i,j,k} d_{ijk}^2}} \right)$

Applied constraints: Non-negativity Unimodality

Different type of initial Estimates

Maximum number of Iterations: 100

Data set 2

Fit values for data set 2

(heterocedastic proportional added noise 6.71%)

Method	Fit %
PARAFAC	89.3
PARAFAC2	93.4
MCR	93.3
Tucker3	93.5

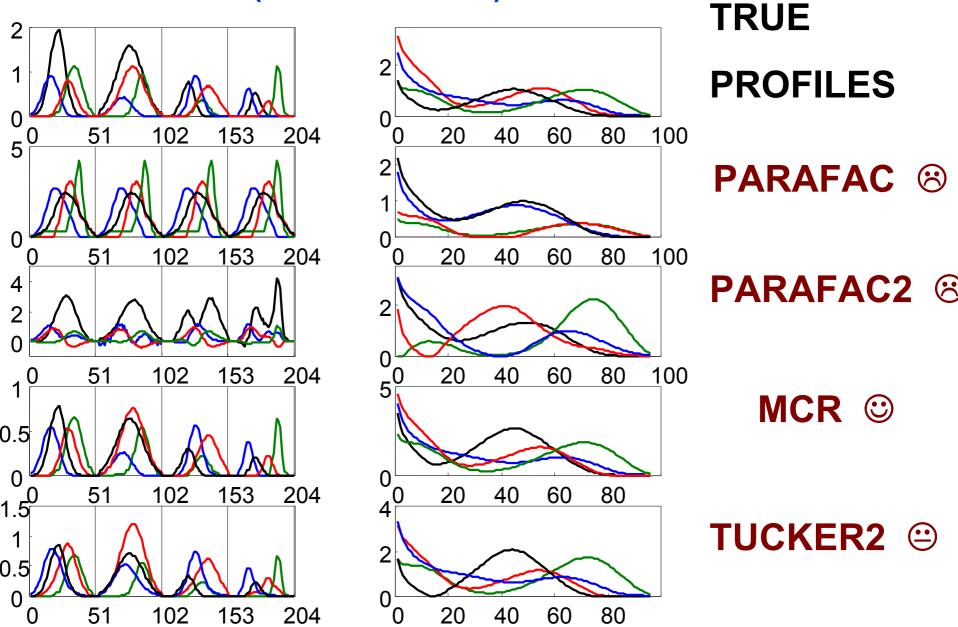
$$Fit\% = 100 \left(1 - \sqrt{\frac{\sum_{i,j,k} e_{ijk}^2}{\sum_{i,j,k} d_{ijk}^2}} \right)$$

Applied constraints: Non-negativity Unimodality

Different type of initial Estimates

Maximum number of Iterations: 100

COMPARISON OF RESOLVED PROFILES (noise free case)

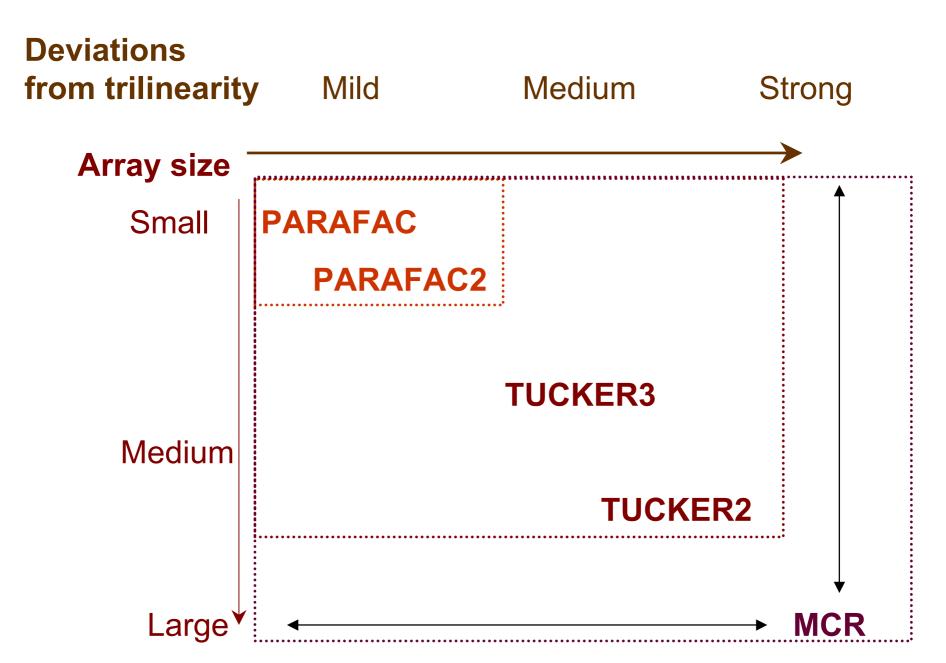


Data set 2

Outline:

- Introduction and motivations of this work
- Models and structures for complex (three-way) chemical measurements data
- Results of comparison of models and methods to analyze complex (three-way) chemical measurements data
- Conclusions

Guidelines for method selection



CONCLUSIONS

✓ PARAFAC performance is extremely vulnerable to deviations from trilinearity.

Performance diagnostic: comparison of lack of fit between PARAFAC and any other non-trilinear modelbased method.

Similar lacks of fit

- \Rightarrow trilinear system
- \Rightarrow use recommended

Higher lack of fit for PARAFAC \Rightarrow non-trilinear system \Rightarrow avoid use

CONCLUSIONS

✓ PARAFAC2 requires the presence of strongly patterned deviations from trilinearity $(C_1C_1^T = C_2C_2^T = ... = C_kC_k^T).$

C-mode (e.g., elution profiles) is unconstrained.

Performance diagnostic: examination of profile shape in C-mode.

Chemically meaningful shapes

 \Rightarrow PARAFAC2 pattern

 \Rightarrow use recommended

Chemically meaningless shapes

- \Rightarrow no PARAFAC2 pattern
- \Rightarrow avoid use

CONCLUSIONS

✓ Restricted TUCKER and MCR perform similarly while not working with large data arrays.

✓ Pseudoinversion of matrix and distinction of profiles related to the elution mode is more stable and gives better results for the MCR C matrix (with augmented C profiles) than for the TUCKER C matrix.

General Conclusions

✓Chemical measurements provide in many circumstances two-, three- and multi-way data

Chemical data usually do fulfill a bilinear model

✓ Chemical data do not fulfill a full trilinear model in many cases

✓ Mixed bilinear and trilinear data models can be optimal in many circumstances and they can be solved using constrained bilinear models of matricized/unfolded cubes or augmented matrices like in MCR

Software

1. N-way toolbox by C. Andersson and R. Bro. http://www.models.kvl.dk/source/nwaytoolbox

2. MCR-ALS by R. Tauler and A. de Juan. http://www.ub.es/gesq/mcr/mcr.htm